Convergence Rates for Exponentially Ill-Posed Inverse Problems with Impulsive Noise
نویسندگان
چکیده
منابع مشابه
Convergence Rates for Inverse Problems with Impulsive Noise
Resumo/Abstract: We study inverse problems F (f) = g where the data g is corrupted by so-called impulsive noise ξ which is concentrated on a small part of the observation domain. Such noise occurs for example in digital image acquisition. To reconstruct f from noisy measurements we use Tikhonov regularization where it is well-known from numerical studies that L-data fitting yields much better r...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملHybrid Samplers for Ill-Posed Inverse Problems
In the Bayesian approach to ill-posed inverse problems, regularization is imposed by specifying a prior distribution on the parameters of interest and Markov chain Monte Carlo samplers are used to extract information about its posterior distribution. The aim of this paper is to investigate the convergence properties of the random-scan random-walk Metropolis (RSM) algorithm for posterior distrib...
متن کاملAdaptivity with Relaxation for Ill-posed Problems and Global Convergence for a Coefficient Inverse Problem
GLOBAL CONVERGENCE FOR A COEFFICIENT INVERSE PROBLEM ∗ LARISA BEILINA† , MICHAEL V. KLIBANOV ‡ , AND MIKHAIL YU. KOKURIN § Abstra t. A new framework of the Fun tional Analysis is developed for the adaptive FEM (adaptivity) for the Tikhonov regularization fun tional for ill-posed problems. As a result, the relaxation property for adaptive mesh re nements is established. An appli ation to a multi...
متن کاملLearning, Regularization and Ill-Posed Inverse Problems
Many works have shown that strong connections relate learning from examples to regularization techniques for ill-posed inverse problems. Nevertheless by now there was no formal evidence neither that learning from examples could be seen as an inverse problem nor that theoretical results in learning theory could be independently derived using tools from regularization theory. In this paper we pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2016
ISSN: 0036-1429,1095-7170
DOI: 10.1137/15m1022252